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Why Bayesian?

The adoption of Bayesian approaches simplifies the
interpretation of the results and augments the inference [Che
et al. , 2010].
Compared with REML, Baek, et al. [2019] demonstrate the
advantages in terms of variation control and powerful
inference.
It is a complementary approach to GWR.
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Does the new model differ from GWR?

We rewrite the GWR model as:

yi = β0 + β1Ni + β2N2
i + (u0i + u1iNi + u2iN2

i ) + ei , (1)

where Ni is the nitrogen level at location si . The random
term incorporates a spatial covariance matrix Vs such that

Σu = Vs ⊗ Vu. (2)

Vs could be AR1(ρr ) ⊗ AR1(ρc), Gaussian random field, or
nearest neighbour distance (similar to GWR).
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What sampler should you use?

NUTS (No U-turn Sampler) [Hoffman et al. , 2014] is an
extension to the Hamiltonian Monte Carlo method.
Compared with Gibbs sampling, NUTS has more effective
sample sizes and lower autocorrelation that decreased at a
faster rate.
When true heritability was low in the simulated data, the
skewness of the marginal posterior distributions with the
NUTS was smaller than that with Gibbs sampling [Nishio et
al. , 2019].
The NUTS is implemented in the R-package: rstan.
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Why NUTS?

Draws from a highly correlated 250-dimensional distribution (right)
RW Gibbs HMC NUTS

Conjugation Yes No No No
High dimension Slow Slow Fast Fast
Divergence risk High Medium Low Low
Sensitive to step size High Medium Medium Low
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Is the Bayesian approach better than GWR?

One goal, two paths.
Each has its own advantages.

GWR Bayesian SCRP

with neighbouring data with all data
higher resolution lower resolution
bandwidth selection prior specification
maximise local log-likelihood maximise global log-likelihood

t scores and p-values credible intervals
PP check and LOO PIT
Pareto k diagnostic
Bayesian R2
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Are the results different?

Predicted yield with medium nitrogen rate 75.4 kg/ha across the
field by GWR (above) and Bayesian SCRP (below).
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New research directions
On-farm large scale experiments can have great success in
two important research directions, impacting Australian
Grains Industry:

I assessment of trait stability; and
I assessment of performance across heterogeneous

environment.
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