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A contradiction in model selection

When we choose the “best model”, it refers to the model which meets the
nominated selection criteria,

AIC [Akaike, H., 1973], BIC [Schwarz, G, 1978]

Cross-validation score, including CV (leave-one-out, k-fold), GCV.
[Wahba, G, 1985]

Others: AICc , RIC (residual information criterion), MDL (minimum
description length) etc.
[Hurvich, C.M., et al, 1989, Shi, P, et al, 2002, Rissanen, J. 1983]

However, sometimes, the “best model” over-fits the data.
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An example

Data is fitted by gam model.
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0

2

4

6

200 400 600
Available water (mm)

P
re

di
ct

ed
 y

ie
ld

 (
t/h

a)

(b) Data fitted by the “best model”

Figure 1: An example of over-fitting by the “best model”.

Available water: the amount of water available for crop use in any growing
season is defined to be one third of summer rainfall plus growing season
rainfall.
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Question

How can we find the best model that meets both our expectation and the
statistical selection criteria?
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Variety trial data

The data set used in [Chen, et al. 2019].

It consists of 9,116 yield estimates taken from 109 variety trials.

It covers a 40-year period of time from 1975 to 2014.

Figure 2 shows the distribution of 775 locations in variety trials
conducted in the WA grain belt, overlaid on 30-year average rainfall
[Garlinge, J., 2005]

Zhanglong Cao (SAGI West) Model selection and the principle of parsimony in statistical modelling in agriculture5 December, 2019, Adelaide 6 / 25



Variety trial data

Figure 2: Map of the paddocks and patched point weather stations in variety
trials with interpolation of 30-years average rain fall. [Chen, et al. 2019]
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Variety trial data

Following [Chen, et al. 2019], we only focus on the following variables
which contribute most to yield estimation and prediction:

Growing season available water.

Location information (longitude and latitude).
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Data visualization
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(a) Yield (t/ha) against available water.
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(b) Location information

Figure 3: Data visualization
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GAM

A generalised additive model (GAM) is a generalised linear model in which
the predictor depends linearly on unknown smooth functions of some
predictor variables, and interest focuses on inference about these smooth
functions [Wood, S. N. 2017, Chen, et al. 2019, Hastie, T., et al, 2009].

E(Y | X1, . . . ,Xp) = α + f1(X1) + . . .+ fp(Xp). (1)
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GAM

A preliminary gam model from package mgcv [Wood, S. N. 2017] for yield
prediction is:

yield ∼ s(water, k1) + s(longitude, latitude, k2), (2)

where k1 and k2 are the number of knots that control the complexity of
the model.
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Balance in model selection

In the process of model selection, there is a tradeoff between bias and
variance [Yu, L, et al, 2006]. Given a new data x0 and observed y0,

E[(y0 − f̂ (x0))2] = Var(f̂0) + Bias2(f̂0) + σ2, (3)

where Var(f̂0) = E[(f̂0 − E[f̂0])2], Bias = E[f̂0]− y0 and σ2 is the
irreducible error (beyond our control).
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Balance in model selection

Figure 4: Over-fitting is a challenge for regression and classification problems
[Lever,J.K. et al 2016].

When model complexity increases, generally bias decreases and variance
increases. The choice of the optimal model is informed by the goal of
minimizing the total error (dotted vertical line).
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Moving-window CV
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Figure 5: Data in the red frame is removed for testing. The rest of the data is
used for training. The window moves forward and the process repeats.
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Moving-window spatially CV

Figure 6: Spatial cross-validation removes spatially autocorrelated data from the
data set for testing [Brenning, A. 2012].
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Adaptive MW cross-validation
In adaptive moving-window cross-validation, the bandwidth of the window
depends on the density of the data.

Figure 7: Narrower window in high density area and wider window in sparse area.
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Adaptive MW cross-validation
In adaptive moving-window cross-validation, the bandwidth of the window
depends on the density of the data.

Figure 8: Narrower window in high density area and wider window in sparse area.
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Comparison

yield ∼ s(water, k1) + s(longitude, latitude, k2) (4)

MW (fixed) AIC BIC 5-fold GCV

k1 3 50 24 50 50

k2 7 10 9 10 10
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Plots
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Figure 9: Smooth plots which meet both our expectation and the balance in
model selection.
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The principle of parsimony

A parsimonious model has the minimum number of parameters and
maximum predictive power, in which every parameter reflected a
known effect on yield predictive system to allow mechanistic
interpretation [Landau, S., et al, 2000, Oweis, T., et al, 2006].

As the model in our study is built for the purpose of prediction, a
simple and parsimonious model with few inputs was selected
[Chen, et al. 2019].
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Conclusion

No Free Lunch Theorems for Optimization
[Wolpert, D.H, et al, 1997].

If data is autocorrelated, moving window/spatially cross-validation is
recommended.

Constrained Generalized Additive Model (CGAM), and Shape
Constrained Additive Models (SCAM)
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Discussion

A further question: how to determine the bandwidth or the window size
for the moving-window cross-validation?

Kernel density estimation

Clustering methods (such as K-means)

Refer to the paper: Rakshit, S. et al. (2019)

Novel Approach to the Analysis of Spatially-varying Treatment Effects in
On-farm Experiments

submitted to Field Crops Research.
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